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mfforestation or tree planting in drylands have been investigated in termsh

carbon sequestration!, landscape restoration? and changes in rivers stream flows?.
The effect of trees on the native vegetation and soil nutrient content was also
explored but only at the subcanopy zone scale*. Little attention has been given to
study the effects of trees planted in drylands on the native vegetation and soil
fertility at large-spatial and long-term scales.

Here we evaluated the effects of woodland plantings (Acacia victoriae) in the
degraded drylands of the Negev in 1993 on soil nutrients content and herbaceous
vegetation after 20 years and 1ts dynamics during the last 10 years. Herbaceous
biomass, topsoil mineral-P, N and K, and soil organic matter were measured at
the planted and an adjacent unplanted area (control). The satellite-derived

Normalized Difference Vegetation Index (NVDVI) from MODIS was used to
expand the timespan of the analysis after calibration with field data.

Data and Methods

-

: MODIS-derived NDVI and Field sampling:

We decomposed MODIS-derived 250 m 16-day Normalized Difference
Vegetation Index (NDVI) time series to their woody and herbaceous
contributions (see details in Helman et al. 2014°). Planted and adjacent unplanted
areas (control) were sampled for herbaceous biomass, soil nutrients (mineral-P,

N and K)) and soil organic matter (SOM) during 2008-2013.

Calibration and calculation of Rain Use Efficiency (RUE):

The NDVI of the herbaceous vegetation was regressed against herbaceous
biomass measured 1n the planted and control sites for calibration (Fig. I).

Rainfall data from two stations were used to calculate RUE (RUE = biomass /
rainfall amount) for both sites during 2000-2013.
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Results
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2. Improved soil fertility and biomass in the planted area

Nutrients concentrations and SOM were significantly higher in planted area
(Fig. 2). The Acacia trees had a facilitative effect on the herbaceous vegetation at
the subcanopy zone, diminishing with distance from the tree bole (Fig. 3).
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3. Biomass and RUE depend on annual rainfall amount

NDVI ., (1.e. herbaceous biomass) and RUE,,,,; (the NDV1I ., to precipitation
amount ratio) declined during 2000-2009 (Fig. 3). Such a decline was attributed to
prolonged drought years as indicated from the NDV1 ¢, and rainfall amount linear
relationship (R = 0.95, P<0.001; Fig. 4 and 5). However, RUE,,,; was maintained
constantly higher 1n the planted area by 40% even in dry years (Fig. 3b).

4. Total biomass gained in the planted area for 1993-2013 \

For the entire period since plantation till date (1993 — 2013) mean annual AAGB

in the planted area was ~60 g m~ yr!. The total AAGB for the entire woodland
islets area was estimated at ~360 t (i.e. 12 t ha'!) for the last 20 years (Fig. 5b).
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1. MODIS-NDVI correlations with herbaceous biomass:
The integral of the NDVI growing season (NDVI ,;), which 1s the herbaceous
contribution to the NDVT signal (see details in Helman et al. 2014°), was
significantly correlated (R = 0.92, P<0.001) with herbaceous biomass in planted
and control sites (green and black symbols, respectively in Fig. 1).
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" Woodland planting 1n drylands improve soil quality and biomass productivity
in a relatively short time.

" RUE and productivity was highly dependent on annual rainfall (R = 0.95).

" This improvement (40% 1n RUE) was maintained even 1n drought years.
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