Can evapotranspiration be estimated from satellite-derived vegetation indices? —

investigation in simple and complex vegetation systems
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INTRODUCTION 1. Sites and satellite data

Estimating evapotranspiration (ET) in space and time is essential for ’}\ The FLUXNET sites NDVE and EV! from MODIS
understanding the terrestrial water cycle. Remote sensing can overcome @

the spatial limitations of scarce ET field measurements. The two main
approaches to derive ET from satellite data are: (i) the empirical A
approach regressing vegetation indices (VIs) against ET from flux towers A
(Glenn et al. 2010), and (ii) the physical-based approach using land o
surface temperature to solve the energy balance equation (Kalma et al. N
2008). The advantage of the VI empirical approach is in that it does not AA o
require additional micrometeorological information, which is difficult to e Spatial resolution of 250 m
obtain. However, the degree of success of this approach is controversial e Temporal resolution of 16 days
(Yebra et al. 2013). Moreover, little attention has been given to
understand the meaning of the ET — VI empirical relationship. Simple vegetation systems (grass/crop) Complex vegetation systems (grass + trees)
We examine the ET — VI relationship in Simple and Complex vegetation
systems separately to understand (a) its biophysical meaning, and (b) the © GRASSLAND | @ CROPLAND
way it should be used. ' =. =TS

A CONIFEROUS FOREST A BROADLEAF FOREST
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2. MODIS VI vs. observed ET/GPP
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4. Complex vegetation systems
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different seasonality, which can explain the low VI-ET the rainy season. corresponding sensitivities of NDVI and EVI to
correlations in the Complex vegetation systems (in Fig. 2 and detect these changes following Fig. 7. The ET in
3). Error bars are #10. forests is mostly transpiration (T) from trees (Fig. 6).
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