

Monitoring vegetation dynamics in evergreen forests by decomposing NDVI time series: Implications for pre and post-fire monitoring

David Helman (davidhelman.biu@icloud.com)

Itamar M. Lensky, Naama Tessler, Yagil Osem

ForestSAT International Conference, Riva del Garda, Italy, November 2014

Importance of monitoring vegetation components in Mediterranean forests

Different phenology for herbaceous and woody vegetation

Vegetation in evergreen Mediterranean forests:

Herbaceous vegetation

An example from the Yatir pine forest (southern Israel)

Yatir forest (Israel)

Photos: Safriel et al. (2011)

The well-defined wet and dry seasons characterizing Mediterranean climate regulate the photosynthetic activity and growth of the vegetation

Decomposition of the NDVI signal into woody and herbaceous

Helman et al. (submitted)

MODIS NDVI time series is decomposed into: NDVI_{Tree} and NDVI_{Herbs} for woody and herbaceous contributions, after smoothing with LOWESS (Cleveland 1979)

$\mathsf{Evaluation}\ of\ \mathsf{NDVI}_{\mathsf{Tree}}\ \mathsf{and}\ \mathsf{NDVI}_{\mathsf{Herbs}}\ \mathsf{using}\ \mathsf{field}\ \mathsf{data}$

Pine forest (Yatir)

Pine-oak forest (Mt Carmel)

Woody savannah (Negev)

Leaf Area Index 2.1 100 • Allometric R = 0.86 P < 0.05Leaf litter R = 0.92 P = 0.08 1.9 80 Woody cover (%) LAI (m² m²) 1.7 60 1.5 40 1.3 20 1.1 0 0.28 0.32 0.26 0.3 0.34 **NDVI**_{Tree}

Herbaceous biomass

Helman et al. (submitted)

Helman et al. (2014), AgrForMet

NDVI_{Tree} and **NDVI_{Herbs}** is significantly correlated with field measurements of LAI, vegetation cover and biomass in evergreen Mediterranean forests and savannah

The wildfire at Mt. Carmel in December 2010 – a case study

The wildfire at Mt. Carmel in December 2010 – a case study

The largest fire ever recorded in Israel

• 44 People killed

aeli Police Aeria<u>l Unit</u>

- More than 2500 ha of forest stands burned
- More than 350 houses damaged
- Damage estimated at 50 60 million €

NDVI_{Tree} for woody cover and status (2002 – 2009)

Helman et al. (in prep.)

Mt. Carmel ridge

1. Woody cover (Mean NDVI_{Tree})

Fire 2005 Fire 2006 Fire 2006 Trend -0.018 -0.012 -0.006 0 0.006 0.012 0.018

2. Woody status (Trend in NDVI_{Tree})

Combining both maps we produced a fuel-based fire risk map that not only consider present conditions (woody cover) but also past conditions (trend in NDVI_{Tree})

Fuel-based fire risk map from NDVI_{Tree}

Helman et al. (*in prep.*)

Mt. Carmel wildfire (December 2010)

Photos: N.Tessler

The NDVI_{Tree}-based risk map explains the fire behavior of Mt. Carmel 2010 wildfire

Fuel–based fire risk map from NDVI_{Tree}

Helman et al. (*in prep.*)

Mt. Carmel wildfire (December 2010)

Photos: N.Tessler

The NDVI_{Tree}-based risk map explains the fire behavior of Mt. Carmel 2010 wildfire

$\Delta NDVI_{Tree}$ as an estimator for fire severity in the burnt area

Helman et al. (in prep.)

J-00 J-01 J-02 J-03 J-04 J-05 J-06 J-07 J-08 J-09 J-10 J-11 J-12 J-13 J-14

$\Delta NDVI_{Tree}$ as an estimator for fire severity in the burnt area

Helman et al. (in prep.)

 $\Delta NDVI_{Tree}$ between fire severity classes assessed from field survey were significantly different (*P* < 0.01), with higher values for most severe burnt areas

Post fire monitoring – woody & herbaceous cover (2010-14)

Vegetation cover in the burnt area (2010-2014)

Photo: N. Tessler

NDVI_{Tree} and **NDVI_{Herbs}** showed similar interannual changes observed from field assessment.

Summary and conclusions

- Good correlations between NDVI_{Tree}/NDVI_{Herbs} and field woody/herbaceous estimates
- NDVI_{Tree} enables producing fuel-based fire risk maps
- ΔNDVI_{Tree} useful for fire severity assessment
- NDVI_{Tree}/NDVI_{Herbs} useful for post-fire monitoring

THANK YOU!

www.davidhelman.weebly.com